Ergodic Theory and Measured Group Theory Lecture 20

Thus a more intoractive notion is that of a finite generating publishion, which may not exist in general. If it does exist for suy a D-action, then whatever the static entropy of the partition is it is the most devec partition for the dynamical 20 - questions gave.

let IN > (X, J) be a pup action by a transform. T. let P Def. be a finite partition of X into measurable pieces. The dynamic entropy of P wrt T is:

$$h(P,T) := \lim_{n \to \infty} \int h(P \vee T^{-1}P \vee T^{-2}P \vee U - \vee T^{-\frac{1}{n-1}}P)$$

notions of unditional interaction and entropy. For a set
$$Q \leq X$$
, define
 $T_Q := \overline{T(Q)} \cdot T | Q$, thick makes (X, T_Q) is to a probespace. For any his is
partition \mathcal{P} of X , the entropy of \mathcal{P} and T_Q is $h_{T_Q}(\mathcal{P}) = -\sum A(\mathcal{P}) \cdot \frac{1}{2} y_Q^2(\mathcal{P})$
We think of this as the expected info given by longing which piece of \mathcal{P}
a randown $X \in X$ is, if we already know that $x \in Q$. Now for a partition
 \mathcal{P} of X , the expected info of \mathcal{P} conditioned on Q is
a randown $X \in X$ is, if we already know that $x \in Q$. Now for a partition
 \mathcal{P} of X , the expected info of \mathcal{P} conditioned on Q is
inplaced in \mathcal{P} is provided in \mathcal{P} in \mathcal{P} . The entropy of \mathcal{P} conditioned on Q is the expected informed on Q is the entropy of \mathcal{P} conditioned on Q in the entropy of \mathcal{P} conditioned on Q is the entropy of \mathcal{P} conditioned on Q in the entropy of \mathcal{P} conditioned on Q in the entropy of \mathcal{P} conditioned on Q is the entropy of \mathcal{P} conditioned on \mathcal{P} conditio

$$(a|+(b) \Rightarrow h(\mathcal{O} \vee \mathcal{G}) \leq h(\mathcal{O}) + h(\mathcal{G})$$
, thick implies that the sequence $a_n := h(\bigvee T^{-i}\mathcal{O})$ is subadditive, so by felate's lemma, lim $\frac{a_0}{h} = i \cdot \int \frac{a_0}{h}$ exists.
Moreover, note that the new into gained on day kell is $h(T^{-k}\mathcal{O}|VT^{-i}\mathcal{O})$,
so $\frac{1}{h}h(\bigvee T^{-i}\mathcal{O}) = \frac{1}{h} \sum_{k \in n} h(T^{-k}\mathcal{O}|VT^{-i}\mathcal{O})$, which justifies thinking of
this as the average into gained over a days.

Obs.
$$h(T^{-n}P) = h(P)$$
 (here T is prop).
Exple. For a Bernoulli shift $(k^{\mathbb{Z}}, v^{\mathbb{Z}})$, v a prob. newsure

On K, taking as P the base partition

$$P_{i} := \int x \in k^{\mathbb{Z}} : x(0) = i \}, \quad i \in K,$$
we see $Mt \quad h(T^{-1}P \mid P) = h(T^{-1}P) = h(P).$

$$C = h(P).$$

$$C = h(P) = h(P) = h(P), \quad so$$

$$h(P,T) = h(P) = h(P) := -\sum v(i) \log v(i).$$

$$i \leq h(P,T) = h(P) = h(P) := -\sum v(i) \log v(i).$$

$$i \leq h(P,T) = h(P) = h(P) = h(P) = -\sum v(i) \log v(i).$$

This follows From the more general fact: Theorem (Abramov). IF (Pu) is a sequence of time partition s.t.

But retries
$$\mathcal{C}_{n}$$
 and $\bigcup_{v \in \mathbb{N}} \mathcal{C}_{n}$ generates $\mathcal{B}(X)$, then
 $h(T) = \lim_{u} h(\mathcal{P}_{n}, T)$.
Finite
Indeed, if \mathcal{P} is a Syncerating partition than taking $\mathcal{P}_{n} \stackrel{=}{=} \bigvee_{u} \mathcal{T}^{i} \mathcal{P}$ works.
Recalling h_{i} there always exists an infinite other generating partition
 $\mathcal{Q} \stackrel{=}{=} (\mathcal{Q})_{i\in\mathbb{N}}$, we can use Abramov's theorem to compute $h(T)$. Indeed,
take $\mathcal{P}_{n} \stackrel{=}{=} \bigvee_{i\in\mathbb{N}} \mathcal{T}^{i} \mathcal{X}_{n}$, where $\mathcal{Q}_{n} \stackrel{=}{=} \{\mathcal{Q}_{0}, \mathcal{Q}_{1}, \dots, \mathcal{Q}_{n+1}, \bigcup_{i\in\mathbb{N}} \mathcal{Q}_{i}\}$.
Obs. It a pup action $\mathbb{Z}^{n}(X, f)$ tactors onto another action \mathbb{Z}^{n}
 (Y, λ) , then $h(T) \ge h(S)$.
Proof. Any partition of Y pulls back to a partition of X of the same entropy
When (Y, λ) is a finite Bernsulli shift, the converse in true!
Sinai's theorem (1964). For a pup action $\mathbb{Z}^{n}(X, f)$, if $h(T) \ge h(v)$ for
 \ni publision \mathcal{P} come measure on a finite set k, then the action feedors
 $v(i)$
 $v(j)$
 v

The pathitism constructed in Sinai's theorem need not be generating.
This makes use since a high generating partition
$$\mathcal{P}$$
 bounds $h(T)$ from
above (as opposed to below) by the Kolmogorov-Sinai theorem:
 $h(T) = h(\mathcal{P}, T) \leq \log |\mathcal{P}|.$
Krieger thought but the converse of this is true!

This show that entropy is small (not infinite) only because there is a time successing partition (i.e. Player 2 has a minuing strategy in the dynamical 20- greations game).